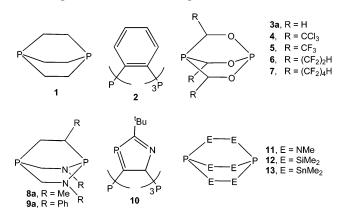
Inorg. Chem. 2007, 46, 9351-9363

Comparisons of Phosphorus Ligation Properties in P(CH₂NR)₃P

Natesan Thirupathi,[†] Phillip M. Stricklen, Xiaodong Liu, Reed Oshel, Ilia Guzei, Arkady Ellern, and John G. Verkade*


Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111

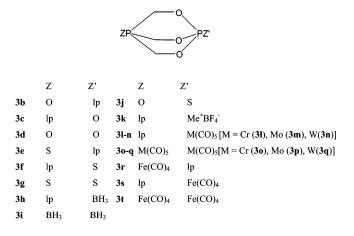
Received February 15, 2007

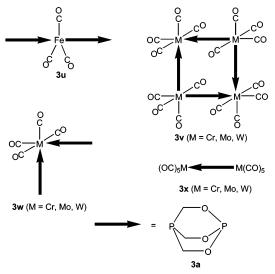
Bicyclic P(CH₂NMe)₃P was synthesized, and its reactions with MnO₂, elemental sulfur, p-toluenesulfonyl azide, BH₃-THF, and W(CO)₅(THF) were shown to furnish a variety of products in which the PC₃ and/or the PN₃ phosphorus are oxidized/coordinated. In contrast, reactions of the previously known P(CH₂NPh)₃P with Mo(0) and Ru(II) precursors were shown to afford products in which only the PC_3 phosphorus is coordinated. The contrast in reactivity of $P(CH_2NR)_3P$ (R = Me, Ph) with the aforementioned reagents is discussed in terms of steric and electronic factors. The new compounds are characterized by analytical and spectroscopic (IR, ¹H, ³¹P, and ¹³C NMR) methods. The results of crystal and molecular structure X-ray analyses of the previously known compounds P(CH₂O)₃P and P(CH₂NPh)₃P and 6 of the 14 new compounds obtained in this investigation are presented. Salient features of these structures and the analysis of the Tolman cone angles calculated from their structural parameters are discussed in terms of the effects of constraint in the bicyclic moieties. Evidence is presented for greater M-P σ bonding effects on coordination of the PC₃ phosphorus of P(CH₂NR)₃P (R = Me, Ph) than are present in PMe₃ analogues of group 6B metal carbonyls. From ${}^{1}J_{BP}$ data on the BH₃ adducts of P(CH₂NMe)₃P, it is suggested that the free bases MeC(CH₂NMe)₃P < P(CH₂NMe)₃P < (Me₂N)₃P < P(MeNCH₂CH₂)₃N increase in Lewis basicity at the PN₃ phosphorus in the order shown. Substantial differences in ³¹P chemical shifts in the bicyclic compounds discussed herein relative to their acyclic analogues do not seem to be associated with the relatively small bond angle changes that occur around either the PN₃ or the PC₃ trivalent phosphorus atoms.

Introduction

Bicyclic molecules of the types shown below possessing two bridgehead phosphorus atoms are interesting because of their high symmetry and their potential for donating an electron pair to one or two acceptors.

^{*} To whom correspondence should be addressed. E-mail: jverkade@iastate.edu.

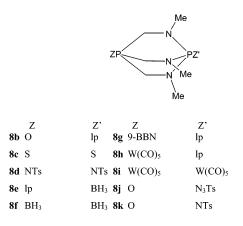

10.1021/ic0703070 CCC: \$37.00 © 2007 American Chemical Society Published on Web 09/25/2007


Although the synthesis of **1** was reported along with a few of its derivatives over 45 years ago,¹ no further results with **1** have been described. Bicyclic 2^2 as well as its perfluoro³ and perchloro⁴ aromatic analogues have been reported, and the dioxide^{5a} and protonated form^{5b} of perhydro **2** are also known. In 1965 our group and others reported various syntheses of **3a**.⁶ Although phosphines are usually considered to be more Lewis basic than phosphites, the PO₃ phosphorus

- (1) Hinton, R. C.; Mann, F. G. J. Chem. Soc. 1959, 2885-2943.
- (2) (a) Weinberg, K. G. J. Org. Chem. 1975, 40, 3586–3589. (b) Weinberg, K. G.; Whipple, E. B. J. Am. Chem. Soc. 1971, 93, 1801–1802.
- (3) Al-Jabar, N. A. A.; Massey, A. G. J. Organomet. Chem. 1985, 287, 57-64.
- (4) (a) Massey, A. G. Adv. Inorg. Chem. 1989, 33, 1–38. (b) Al-Jabar, N. A. A.; Jones, J. B.; Brown, D. S.; Colligan, A. H.; Massey, A. G.; Miller, J. M.; Nye, J. W. Appl. Organomet. Chem. 1989, 3, 459– 468.
- (5) (a) Schomburg, D.; Sheldrick, W. S. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1975, B31, 2427–2431. (b) Vande Griend, L. J.; Verkade, J. G.; Jongsma, C.; Bickelhaupt, F. Phosphorus Relat. Elem. 1976, 6, 131–133.
- (6) (a) Coskran, K. J.; Verkade, J. G. *Inorg. Chem.* 1965, *4*, 1655–1657.
 (b) Rathke, J. W.; Guyer, J. W.; Verkade, J. G. *J. Org. Chem.* 1970, 35, 2310–2313. (c) Kisanga, P.; Verkade, J. G. *Heteroat. Chem.* 2001, *12*, 114–117. (d) Kozlov, E. S; Tovstenko, V. I. *Zh. Obshch. Khim.* 1980, *50*, 1499–1501. (e) Volcko, E. J.; Verkade, J. G. *Phosphorus Sulfur* 1984, *21*, 111–118.

 $^{^\}dagger$ Current address: Department of Chemistry, University of Delhi, Delhi 110 007, India.

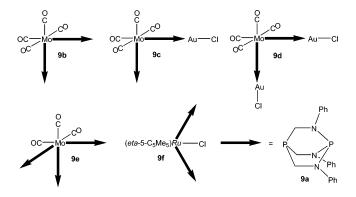
of **3a** was shown to react preferentially with chalcogens and transition metals, and evidence consistent with better π -acceptor properties of the PO₃ phosphorus was presented.^{6a,7-10} A variety of nonmetal derivatives (**3b**-**k**) and transition metal complexes (**3l**-**x**) of **3a** have appeared in the literature.^{6a,7-11} R groups other than H in **3a** (i.e., **4**-**7**), halo derivatives P(RCHO)₃PX₂ of **4**-**6**, oxo derivatives P[C(R)-HO]₃P=O and OP[C(CCl₃)HO]₃P of **4**-**6**, and P[C(CCl₃)-HO]₃P=NTs have also been synthesized.¹²⁻¹⁶



- (7) Allison, D. A.; Verkade, J. G. Phosphorus 1973, 2, 257–264.
- (8) Clardy, J. C.; Dow, D. C.; Verkade, J. G. *Phosphorus* **1975**, *5*, 85–89.
- (9) Stricklen, P. M.; Volcko, E. J.; Verkade, J. G. J. Am. Chem. Soc. 1983, 105, 2494–2495.
- (10) Bertrand, R. D.; Allison, D. A.; Verkade, J. G. J. Am. Chem. Soc. 1970, 92, 71–77.
- (11) Allison, D. A.; Clardy, J. C.; Verkade, J. G. Inorg. Chem. 1972, 11, 2804–2809.
- (12) Shermolovich, Y. G.; Danchenko, E. A.; Solov'ev, A. V.; Markovskii, L. N. Zh. Obshch. Khim. 1985, 55, 2218–2226.
- (13) Kozlov, E. S.; Solov'ev, A. V.; Markovskii, L. N. Zh. Obshch. Khim. 1978, 48, 2437–2442.
- (14) Chernega, A. N.; Tumanskii, B. L.; Antipin, M. Y.; Solodovnikov, S. P.; Bubnov, N. N.; Prokof'ev, A. I.; Struchkov, Y. T.; Kozlov, E. S.; Boldeskul, I. E.; Kabachnik, M. I. Zh. Obshch. Khim. 1986, 56, 546–552.
- (15) Shermolovich, Y. G.; Danchenko, E. A.; Solov'ev, A. V.; Trachevskii, V. V.; Markovskii, L. N. Zh. Obshch. Khim. 1986, 56, 560-567.
- (16) Markovskii, L. N.; Solov'ev, A. V.; Pirozhenko, V. V.; Shermolovich, Y. G. Zh. Obshch. Khim. 1981, 51, 1950–1956.

Compounds **8a**¹⁷ and **9a**¹⁷ have been reported by us, as has been an improved route to **9a**.^{6c} A multistep synthesis of **10** has been described,¹⁸ and bicyclic diphosphines bearing N–N (**11**¹⁹), Si–Si (**12**²⁰), or Sn–Sn (**13**²¹) linkages are known. Derivatives of **11** in which both phosphorus atoms are bonded to BH₃,^{19a,b} W(CO)₅,^{19c} NPh,^{19c,d} S,^{19a} or O^{19e} are also known.

In an effort (i) to delineate the factors that dictate the reactivity of the PC₃ versus PN₃ phosphorus (or PO₃ phosphorus in case of 3a) and (ii) to utilize 8a and 9a as ligands for constructing bis-ligated dinuclear and macrocyclic tetranuclear metal complexes as we reported with $3a^{6-11}$ (e.g., 30-q, 3t,v,x) we synthesized (a) bicyclic 8a, six of its nonmetal derivatives (8b-g), and two of its transition metal complexes (8h,i), (b) transition metal complexes of 9a (i.e., **9b** and **9d**-**f**), and (c) a molybdenum tetracarbonyl complex of 8b (i.e., 8l). Spectroscopic evidence for 9c as an intermediate formed during the synthesis of **9d** is put forth. The results of crystal and molecular structure X-ray analyses of the previously known compounds 3a and 9a and the new compounds 8b,f,i and 9d,e,f are presented, and Tolman cone angles ranging from 106 to 220° were calculated for 3a, **8b**,**f**,**i**, and **9a**,**d**,**e**,**f** from their X-ray parameters.



cis/trans-Mo(CO)₄[P(NMeCH₂)₃P=O]₂ (81)

Experimental Section

General Methods. All reactions were carried out under argon. Solvents were purified by standard procedures prior to use,²² and the following compounds were prepared by published methods: (η^{5} -C₅Me₅)RuCl(COD),²³ **3a**,^{6a} and **9a**,^{6c} as well as P(CH₂NHPh)₃²⁴ that was used to prepare **9a**. [P(CH₂OH)₄]₂SO₄ (a generous donation

- (17) Stricklen, P. M. Ph.D. Dissertation, Iowa State University, Ames, IA, 1970.
- (18) Keller, H.; Regitz, M. Tetrahedron Lett. 1988, 29, 925-928.
- (19) (a) Goetze, R.; Noth, H.; Payne, D. S. Chem. Ber. 1972, 105, 2637–2653. (b) Kroshefsky, R. D.; Verkade, J. G. Phosphorus Sulfur 1979, 6, 397–405. (c) Kroshefsky, R. D.; Verkade, J. G.; Pipal, J. R. Phosphorus Sulfur 1979, 6, 377–389. (d) Bermann, M.; Van Wazer, J. R. Inorg. Chem. 1974, 13, 737–738. (e) Gilje, J. W.; Seff, K. Inorg. Chem. 1972, 11, 1643–1646.
- (20) (a) Winkler, U.; Schieck, M.; Pritzkow, H.; Driess, M.; Hyla-Kryspin, I.; Lange, H.; Gleiter, R. J. Chem. Eur. 1997, 3, 874–880. (b) Kolleger, G. M.; Katzenbeisser, U.; Hassler, K.; Kruger, C.; Brauer, D.; Gielen. R. J. Organomet. Chem. 1997, 543, 103–110.
- (21) Draeger, M.; Mathiasch, B. Angew. Chem. 1981, 93, 1079-1080.
- (22) Amerego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, 4th ed.; Butterworth and Heinemann: Oxford, U.K., 1996.

from Albright & Wilson, Americas), BH3 • THF, 9-BBN, and Mo-(CO)₄(NBD) (Aldrich), and W(CO)₆ and Mo(CO)₃(CHT) (Strem) were used as received. W(CO)5(THF) was prepared in situ by irradiating a quartz Schlenk flask (20 cm length \times 3.0 cm diameter) containing an appropriate amount of W(CO)6 in THF for 12 h with a 450 W 4.3 in. water-cooled UV immersion lamp (Ace Glass Inc.). Details of the melting points, elemental analyses, electrospray ionization (ESI) mass spectral analyses, and NMR (1H, 13C, and ³¹P) and IR spectroscopies were previously described.²⁵ ¹Hdecoupled ¹¹B NMR spectra were recorded on a Bruker WM-200 NMR spectrometer using BF₃•Et₂O as the external standard. Single crystals of 3a were obtained by slow sublimation (82 °C/400 mTorr). Single crystals of 9a were obtained by cooling an EtOAc solution of 9a to -30 °C. Anal. Calcd for $C_{21}H_{21}N_3P_2$: C, 66.84; 5.60; N, 11.13. Found: C, 65.85/65.84; H, 5.78/5.81; N, 11.12/ 11.06.

P(CH₂NMe)₃P (8a). A 75% aqueous solution of [P(CH₂-OH)₄]₂SO₄ (167.7 g, 410.2 mmol) was dissolved in distilled water (205 mL), and the resulting solution was purged with nitrogen for 12 h while being stirred. Under continued stirring at 0 °C, a 40% aqueous solution of methylamine (143.0 g, 1.841 mol) was slowly added. The temperature was slowly raised to 25 °C, and stirring was continued for an additional 12 h. The aminophosphine P(CH2-NMeH)3 and aminophosphine oligomers were extracted with dichloromethane (5 \times 50 mL), and the extracts were stored over Na₂SO₄. Dichloromethane was removed under reduced pressure to give a mixture that contained a colorless free-flowing oil and a semisolid (47.02 g). The free-flowing oil, which was decanted from the semisolid, was used for subsequent reactions. Attempts to obtain pure P(CH₂NMeH)₃ by vacuum distillation were unsuccessful. ¹Hdecoupled ³¹P NMR (CDCl₃) for the mixture of P(CH₂NMeH)₃ and aminophosphine oligomers: δ -59.9 (br). Reliable ¹H and ¹³C NMR spectral assignments could not be made for P(CH₂NMeH)₃.

A 47.02 g sample of P(CH₂NMeH)₃/aminophosphine oligomers was charged to a 500 mL flask under dry nitrogen. The flask was heated to 95 °C under stirring, and then P(NMe₂)₃ (48.77 g, 300.0 mmol) was slowly added over a period of 1 h. When the addition was complete, the temperature was raised to 135 °C with stirring for 24 h after which the mixture was allowed to cool to room temperature. The free flowing orange liquid was transferred to another flask and vacuum distilled (42 °C/12 mTorr). The distillate (52.16 g) was shown to contain approximately 40% of **8a** as estimated by ¹H NMR spectroscopy. The remaining material (presumably aminophosphine oligomers) showed broad ³¹P NMR resonances at -33.26, -39.98, -56.36, and -58.52 ppm. An

estimate of the amount of **8a** in the reaction mixture was made as follows. The aminophosphine oligomers were selectively removed by transferring 100 mg of the distilled material into a 5 mm NMR tube that contained ca. 1.0 mL of cyclohexane. A 3.0% aqueous H_2O_2 solution was added dropwise to this solution while the reaction was monitored by ³¹P NMR spectroscopy. The aminophosphine oligomers after oxidation were found in the water layer, leaving **8a** in the cyclohexane. When the oligomers were completely oxidized, H_2O_2 addition was stopped because **8a** reacted with H_2O_2 to destroy the cage.

From the above ³¹P NMR experiment, the amount of H_2O_2 required to oxidize the aminophosphine oligomers for the rest of the distilled material was calculated, and then the scaled up oxidation experiment was carried out at 0 °C in 500 mL of cyclohexane. The oxidized impurities were extracted into the water layer, the cyclohexane layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure leaving **8a** as a colorless liquid in 25% overall yield. ³¹P{¹H} NMR (C₆D₆): δ -53.1 (d, PC₃), 82.3 (br d, PN₃), ³J_{PP} 26.6 Hz. ¹H NMR (C₆D₆): δ 2.54 (d, ³J_{PH} 16.76 Hz, NCH₃, 9H), 2.78 (dd, ²J_{PH} 7.16 Hz; ³J_{PH} 3.40 Hz, NCH₂, 6H). ¹³C{¹H} NMR (C₆D₆): δ 43.0 (d, ²J_{PC} 34.50 Hz, NCH₃, 3C), 44.9 (d, ¹J_{PC} 12.13 Hz, NCH₂, 3C). ESI-MS (*m*/*z*): 192 (M + H)⁺, 177 (M - Me)⁺. Anal. Calcd for C₆H₁₅N₃P₂: C, 37.70; H 7.91; N, 21.98. Found: C, 37.67/37.70; H, 7.94/8.01; N, 21.79/21.93.

O=P(CH₂NMe)₃P (8b). To a toluene (25 mL) solution of **8a** (1.19 g, 6.22 mmol) was added 85% activated MnO₂ (3.28 g, 37.7 mmol), and the mixture was refluxed for 2 h. After being cooled to room temperature, the solution was filtered and toluene was removed under reduced pressure giving **8b** as a hygroscopic white solid. Yield: 53%. Crystals were grown by vapor diffusion of pentane into a benzene solution of **8b**. Mp: 155 °C. IR (Nujol, cm⁻¹): $\nu_{P=0}$ 1319 (m). ³¹P{¹H} NMR (CDCl₃): δ 35.6 (d, *PC*₃), 81.5 (d, *PN*₃), ³*J*_{PP} 13.7 Hz. ¹H NMR (CDCl₃): δ 2.67 (dd, ³*J*_{PH} 16.4 Hz; ⁴*J*_{PH} 2.4 Hz, NCH₃, 9H), 3.18 (dd, ²*J*_{PH} 12.80 Hz; ³*J*_{PH} 2.92 Hz, NCH₂, 6H). ¹³C{¹H} NMR (CDCl₃): δ 42.2 (dd, ²*J*_{PC} 30.3 Hz, ³*J*_{PC} 8.34 Hz, NCH₃, 3C), 47.7 (dd, ¹*J*_{PC} 68.99 Hz; ²*J*_{PC} 4.17 Hz, NCH₂, 3C). Anal. Calcd for C₆H₁₅N₃P₂O: C, 34.78; H 7.30; N, 20.28. Found: C, 34.24/34.22; H, 7.30/7.46; N, 19.75/ 19.52.

S=P(CH₂NMe)₃P=S (8c). To a benzene (80 mL) solution of 8a (4.00 g, 20.9 mmol) was added elemental sulfur (1.70 g, 53.0 mmol) in small portions over 30 min. The solution was refluxed for 2 h, cooled, and filtered. Benzene was removed from the filtrate to give a white solid to which cyclohexane (50 mL) was added. The mixture was refluxed for 1 h and filtered hot to remove cyclohexane-soluble impurities. After drying the cyclohexaneinsoluble material in vacuo, acetone (100 mL) was added and the mixture was heated to reflux for 1 h and filtered hot to give a white solid consisting of 1.20 g of pure 8c. Acetone was removed from the filtrate in vacuo to give a solid that was dissolved in chloroform and filtered; the filtrate was concentrated to give a green paste from which impurities were removed by washing with acetone, providing an additional 700 mg of 8c. Total yield: 30%. Mp: 228 °C. ³¹P-{¹H} NMR (CDCl₃): δ 34.6 (d, PC₃), 62.5 (d, PN₃), ³J_{PP} 107.8 Hz. ¹H NMR (CDCl₃): δ 2.90 (dd, ³J_{PH} 12.12 Hz; ⁴J_{PH} 2.74 Hz, NCH₃, 9H), 3.64 (apparent t, ²J_{PH} ³J_{PH} 7.42 Hz, NCH₂, 6H). ¹³C-{¹H} NMR (CDCl₃): δ 40.2 (d, ²*J*_{PC} 3.37 Hz, N*C*H₃, 3C), 54.2 (d, ¹J_{PC} 47.17 Hz, NCH₂, 3C). Anal. Calcd for C₆H₁₅N₃P₂S₂: C, 28.23; H 5.92; N, 16.46; S, 25.12. Found: C, 28.30/28.39; H, 5.55/5.76; N, 16.49/16.45; S, 25.06/24.96.

TsN=P(CH₂NMe)₃P=NTs (8d). To a stirred acetone (50 mL) solution of 8a (2.06 g, 10.8 mmol) was slowly added tosyl azide (4.25 g, 21.6 mmol) whereupon immediate gas evolution was

⁽²³⁾ Fagan, P. J.; Mahoney, W. S.; Calabrese, J. C.; Williams, I. D. Organometallics 1990, 9, 1843–1852.

⁽²⁴⁾ Frank, A. R.; Drake, G. L., Jr. J. Org. Chem. 1972, 37, 2752–2755.
(25) Thirupathi, N.; Liu, X.; Verkade, J. G. Inorg. Chem. 2003, 42, 389–397.

observed. The mixture was stirred for an additional 15 h; then acetone was removed under reduced pressure to give a solid to which diethyl ether (15 mL) was added, and the mixture was stirred for 30 min. The ether-insoluble material was collected by filtration and dried under reduced pressure to give 8d in quantitative yield. Purified 8d for elemental analysis was obtained by crystallization via vapor diffusion of pentane into a CHCl3 solution. Mp: 230 °C. ${}^{31}P{}^{1}H$ NMR (CDCl₃): δ 1.7 (d, PC₃), 20.0 (d, PN₃), ${}^{3}J_{PP}$ 115.1 Hz. ¹H NMR (CDCl₃): δ 2.39, 2.41 (each s, C₆H₄CH₃-4, 6H), 2.91 (dd, ${}^{3}J_{PH}$ 11.08 Hz, ${}^{4}J_{PH}$ 2.76 Hz, NCH₃, 9H), 3.79 (apparent t, ${}^{2}J_{\text{PH}}$, ${}^{3}J_{\text{PH}}$ 8.68 Hz, NCH₂, 6H), 7.25, 7.75 (m, C₆H₄, 8H). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃): δ 21.6, 21.7 (each s, C₆H₄CH₃-4, 2C), 39.5 (d, ²J_{PC} 1.14 Hz, NCH₃, 3C), 48.3 (dd, ¹J_{PC} 60.27 Hz, ²J_{PC} 2.27 Hz, NCH₂, 3C), 125.8, 129.5, 142.0 (m, C₆H₄, 12C). Anal. Calcd for C₂₀H₂₉N₅O₄P₂S₂: C, 45.36; H, 5.52; N, 13.22; S, 12.11. Found: C, 45.08/45.08; H, 5.72/5.72; N, 13.19/13.17; S, 12.06/11.96.

P(CH₂NMe)₃P·BH₃ (8e). To a stirred solution of 8a (2.06 g, 10.8 mmol) in THF (50 mL) was slowly added a 1.0 M THF solution of BH₃·THF (11.0 mmol, 11.0 mL). The mixture was stirred for 15 h, and then THF was removed under reduced pressure to give a gum to which was added pentane (15 mL) followed by stirring for 30 min. After filtration, the pentane-insoluble material was dried under reduced pressure to give a solid that was dissolved in CH₂Cl₂ (10 mL) and filtered. Hexanes were added to the filtrate to obtain 8e as a white precipitate in 69% yield (1.57 g). Mp: 114 °C. ³¹P{¹H} NMR (CDCl₃): δ -56.4 (d, *P*C₃), 84.3 (four-line pattern, ¹J_{PB} 88.5 Hz, PN₃), ³J_{PP} 8.6 Hz. ¹¹B{¹H} NMR (CDCl₃): δ –43.5 (d, $P\rm{N}_3,~^1J_{PB}$ 87.2 Hz $B\rm{H}_3,~1$ B). $^1\rm{H}$ NMR (CDCl_3): δ 0.47 (quartet of doublets, ¹*J*_{BH} 96.24 Hz; ²*J*_{PH} 17.16 Hz, B*H*₃, 3H), 2.69 (d, ³J_{PH} 13.64 Hz, NCH₃, 9H), 3.24 (dd, ²J_{PH} 6.40 Hz; ³J_{PH} 5.68 Hz, NCH₂, 6H). ¹³C{¹H} NMR (CDCl₃): δ 40.3 (d, ²J_{PC} 6.82 Hz, NCH₃, 3C), 46.5 (dd, ¹J_{PC} 18.57 Hz, ²J_{PC} 4.93 Hz, NCH₂, 3C). Anal. Calcd for C₆H₁₈N₃P₂B: C, 35.15; H 8.85; N, 20.50. Found: C, 35.03/34.95; H, 8.92/8.87; N, 19.77/19.85.

H₃B·P(CH₂NMe)₃P·BH₃ (8f). To a stirred solution of 8a (0.635 g, 3.32 mmol) in THF (40 mL) was slowly added a 1.0 M THF solution of BH₃·THF (7.0 mmol, 7.0 mL), and stirring was continued for 15 h. THF was removed under reduced pressure to give a solid to which Et₂O (15 mL) was added. The mixture was stirred for 30 min and filtered, and the ether-insoluble material was dried under reduced pressure to give a solid. The solid was dissolved in CH₂Cl₂ (10 mL) and filtered, and the filtrate was concentrated to give 8f as a white solid in 40% yield (0.293 g). Crystals for X-ray analysis were grown by pentane vapor diffusion into a benzene solution of **8f**. Mp: 150 °C. ³¹P{¹H} NMR (CDCl₃): δ 4.5 (br, PC_3), 87.3 (br m, PN_3). ¹¹B{¹H} NMR (CDCl₃): δ -42.9, -44.1 (each br, BH₃, 2B). ¹H NMR (CDCl₃): δ 0.47 (four-line pattern, ¹J_{BH} 96.0 Hz, BH₃, 6H), 2.75 (dd, ³J_{PH} 13.28 Hz; ⁴J_{PH} 1.20 Hz, NCH₃, 9H), 3.38 (apparent t, ²J_{PH}, ³J_{PH} 4.92 Hz, NCH₂, 6H). ¹³C{¹H} NMR (CDCl₃): δ 40.4 (dd, ²*J*_{PC} 6.45 Hz, ³*J*_{PC} 4.55 Hz, NCH₃, 3C), 46.1 (dd, ¹J_{PC} 28.81 Hz; ²J_{PC} 5.68 Hz, NCH₂, 3C). Anal. Calcd for C₆H₂₁N₃P₂B₂: C, 32.93; H 9.67; N, 19.20. Found: C, 32.85/32.91; H, 9.65/9.78; N, 19.17/19.15.

Reaction of 8a with 9-BBN. A 0.5 M THF solution of 9-BBN (1.61 mL, 805 μ mol) was slowly added to a 5 mm NMR tube containing **8a** (154 mg, 805 μ mol). The reaction mixture was briefly shaken, and then the ³¹P NMR spectrum was recorded after 15 min revealing the formation of a new species in addition to **8a**. The structure of the new species was assigned to **8g**. The intensity of the ³¹P NMR signals corresponding to **8g** increased relative to that corresponding to **8a** over 24 h. The ³¹P NMR spectrum recorded after ca. 4 days indicated the presence of **8a**,**g** and several unidentified species. Because of the equilibrium involving **8a**,**g**,

the latter could not be isolated. ³¹P NMR (THF) for **8g**: $\delta_P = 8.1$ (br, *P*C₃), 84.4 (d, ³*J*_{PP} 9.77 Hz, *P*N₃).

W(CO)₅[P(CH₂NMe)₃P] (8h). W(CO)₅(THF) was prepared in situ as mentioned earlier from $W(CO)_6$ (2.00 g, 5.68 mmol) and THF (200 mL). This solution was slowly added to a stirred solution of 8a (1.50 g, 7.85 mmol) in THF (20 mL). The mixture was stirred for an additional 15 h after which THF and unreacted 8a were removed by evaporation under reduced pressure to furnish a colorless solid which was dissolved in pentane and filtered, and the filtrate was concentrated under reduced pressure to give 8h as a white powder in 48% yield [based on W(CO)₆]. A pure sample of 8h was obtained by sublimation (120 °C/300 mtorr). Mp: 108-110 °C. IR (Nujol, cm⁻¹): ν_{CO} 2072 (s), 1943 (s, br), 1913 (s, sh). ³¹P{¹H} NMR(CDCl₃): δ -23.2 (d, ¹J_{WP} 118.0 Hz, PC₃),79.0 (d, *PN*₃), ${}^{3}J_{PP}$ 16.3 Hz. ${}^{1}H$ NMR (CDCl₃): δ 2.70 (dd, ${}^{3}J_{PH}$ 16.47 Hz, ⁴*J*_{PH} 1.35 Hz, NC*H*₃, 9H), 3.24 (dd, ²*J*_{PH} 3.06 Hz, ³*J*_{PH} 1.59 Hz, NCH₂, 6H). ¹³C{¹H} NMR (CDCl₃): δ 42.2 (dd, ²J_{PC} 33.69 Hz, ${}^{3}J_{PC}$ 5.05 Hz, NCH₃, 3C), 50.0 (dd, ${}^{1}J_{PC}$ 26.95 Hz, ${}^{2}J_{PC}$ 3.37 Hz, NCH₂, 3C), 195.3 (d, ${}^{2}J_{PC}$ 6.74 Hz, ${}^{1}J_{WC}$ 62.33 Hz, *cis*-CO, 4C), 198.3 (d, ²J_{PC} 21.90 Hz, trans-CO, 1C). Anal. Calcd for C₁₁H₁₅N₃O₅P₂W: C, 25.65; H 2.94; N, 8.16. Found: C, 25.38/ 25.33; H, 2.93/2.91; N, 8.08/8.03.

W(CO)₅[P(CH₂NMe)₃P]W(CO)₅ (8i). Freshly sublimed 8h (1.18 g, 2.29 mmol) was dissolved in 20 mL of stirred THF to which was then added a THF solution of W(CO)₅(THF) [generated from 1.40 g of W(CO)₆], and THF (200 mL) was slowly added. When the addition was complete, stirring was continued for an additional 24 h. THF was then removed under reduced pressure to give a solid material that was heated at 70 °C (300 mtorr) to remove unreacted $W(CO)_6$. The residue was then dissolved in a minimum amount of THF followed by addition of pentane to give a precipitate which was filtered off and dried under reduced pressure to give 8i in quantitative yield (based on 8h). Single crystals for X-ray analysis were grown by vapor diffusion of pentane into a dichloromethane solution of **8i**. Mp: 186 °C. IR (Nujol, cm⁻¹): ν_{CO} 2071(s), 1977 (sh, s), 1942 (br, vs), 1906 (br, vs). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): δ -1.7 (d, ¹J_{WP} 91.2 Hz, PC₃),111.3 (d, ¹J_{WP} 170.9 Hz, PN₃), ³J_{PP} 65.1 Hz. ¹H NMR (CDCl₃): δ 2.99 (dd, ³J_{PH} 13.68 Hz, ⁴J_{PH} 1.56 Hz, NCH₃, 9H), 3.53 (d, ²J_{PH} 4.68 Hz, NCH₂, 6H). ¹³C{¹H} NMR (CDCl₃): δ 43.2 (d, ² J_{PC} 8.42 Hz, NCH₃, 3C), 51.4 (dd, ¹ J_{PC} 21.90 Hz, ²*J*_{PC} 3.37 Hz, NCH₂, 3C), 195.0 (d, ²*J*_{PC} 6.74 Hz, ¹*J*_{WC} 60.64 Hz, *cis*-CO on W bonded to PC₃ end, 4C), 196.5 (d, ${}^{2}J_{PC}$ 10.10 Hz, ${}^{1}J_{WC}$ 62.33 Hz, *cis*-CO on W bonded to PN₃ end, 4C), 197.5 (d, ${}^{2}J_{PC}$ 13.47 Hz, *trans*-CO on W bonded to PN₃ end, 1C), 198.1 (d, ${}^{2}J_{PC}$ 5.05 Hz, *trans*-CO on W bonded to PC₃ end, 1C). Anal. Calcd for C₁₆H₁₅N₃O₁₀P₂W₂: C, 22.91; H 1.80; N, 5.00. Found: C, 22.88/22.88; H, 1.88/1.80; N, 4.92/4.95.

cis/trans-Mo(CO)₄[P(NMeCH₂)₃P=O]₂ (81). To a solution of 8b (0.44 g, 2.1 mmol) in CHCl₃ (10 mL) was slowly added a solution of Mo(CO)₄(NBD) (0.31 g, 1.0 mmol) in 10 mL of CHCl₃. Crystals of 81 grew on the sides of the flask along with some decomposition products. The crystals were hand picked, washed with a minimum amount of CHCl₃, and vacuum-dried. Yield: 32%. Mp: 260 °C (subl). IR (Nujol, cm⁻¹): v_{CO} 2029 (m), 2022 (m), 1924 (s), 1907 (s), 1889 (s), 1878 (s); $\nu_{P=O}$ 1377 (m). ³¹P{¹H} NMR (CDCl₃): second-order AA'MM' pattern, δ 37.8 (dt, PC₃), 131.5 (dt, PN₃); spacing between the two adjacent lines in an apparent doublet, 99.5 Hz; spacing between the two adjacent lines in an apparent triplet, 20.1 Hz. ¹H NMR (CDCl₃): δ 2.91 (dd, ³J_{PH} 12.84 Hz, ⁴J_{PH} 2.04 Hz, NCH₃, 18H), 3.38 (dd, ²J_{PH} 9.24 Hz; ³J_{PH} 3.96 Hz, NCH₂, 12H). Anal. Calcd for C₁₆H₃₀N₆O₆P₄Mo: C, 30.88; H, 4.86; N, 13.50. Found: C, 30.79/30.78; H, 4.94/4.91; N, 13.55/ 13.66.

Phosphorus Ligation Properties in P(CH₂NR)₃P

cis-Mo(CO)₄[P(CH₂NPh)₃P]₂ (9b). A solution of Mo(CO)₄-(NBD) (0.230 g, 0.766 mmol) in CH₂Cl₂ (10 mL) was slowly added to a CH₂Cl₂ (10 mL) solution of 9a (0.582 g, 1.54 mmol). The mixture was allowed to stir for 24 h, and then solvent was removed under reduced pressure to give a solid that was stirred with hexanes. The hexanes-insoluble material was filtered off and dried under reduced pressure to afford 9b in 82% yield. Mp: 145 °C (subl). IR (Nujol, cm⁻¹): ν_{CO} 1950 (s), 1931 (s, sh), 1924 (s), 1893 (s). ³¹P-{¹H} NMR (CDCl₃): second-order AA'MM' pattern, δ_P 14.9 (fourline pattern, *P*C₃, 2P), 53.7 (four-line pattern, *P*N₃, 2P); spacing between two adjacent lines in the four line pattern, 5.50 Hz. ¹H NMR (CDCl₃): δ 3.86 (s, NCH₂, 12 H), 6.98, 7.25 (m, C₆H₅, 30H). Anal. Calcd for C₄₆H₄₂N₆O₄P₂Mo•CH₂Cl₂: C, 53.88; H, 4.23; N, 8.02. Found: C, 53.42/52.42; H, 4.47/4.62; N, 8.03/7.93.

Reaction of 9a with Mo(CO)₄(NBD) (1:1 Ratio). The reaction of **9a** (0.179 g, 0.474 mmol) with 1 equiv of Mo(CO)₄(NBD) (0.142 g, 0.474 mmol) in CH₂Cl₂ at room temperature or with 1 equiv of Mo(CO)₆ (0.124 g, 0.470 mmol) in refluxing toluene for 12 h formed **9b** as shown by ³¹P NMR spectroscopy.

Reaction of 9b with ClAu(SMe₂) (1:1 Ratio). To a suspension of ClAu(SMe₂) (0.294 g, 1.00 mmol) in CHCl₃ (8 mL) at room temperature was added a solution of **9b** (0.963 g, 1.00 mmol) in CHCl₃ (7 mL) over a period of 5 min. After stirring of the sample for an additional 24 h at room temperature, the ³¹P NMR spectrum of the reaction mixture showed four broad resonances that are tentatively assigned to **9c**. ³¹P{¹H} NMR(CDCl₃): δ 14.7 (br, P_A), 38.6 (br, P_{A'}), 54.1 (br, P_M), 73.8 (br, P_{M'}).

Reaction of 9b with ClAu(SMe₂)(1:2 Ratio). To a suspension of ClAu(SMe₂) (0.294 g, 1.00 mmol) in chloroform (8 mL) at room temperature was added a solution of 9b (0.481 g, 0.500 mmol) in chloroform (7 mL) over a period of 5 min. After being stirred for an additional 2 h at room temperature, the reaction mixture was filtered. The filtrate was concentrated to ca. 5 mL followed by the addition of Et2O to obtain a brown solid which was washed with diethyl ether and dried under vacuum for 10 h to give 9d. Single crystals for X-ray analysis were obtained by slow diffusion of Et₂O into a CHCl₃ solution of **9d**. ${}^{31}P{}^{1}H{}$ NMR(DMSO- d_6): secondorder AA'MM' pattern, δ 33.9 (four-line pattern, PC₃, 2P), 71.3 (four-line pattern, PN₃, 2P); spacing between two adjacent lines in the four-line pattern, 10.4 Hz. ¹H NMR (DMSO- d_6): δ 4.24 (br, NCH_2 , 12H), 7.42 (m, C_6H_5 , 30H). The DMSO or the DMF solution of 9d upon standing became green and finally blue, suggesting oxidation of molybdenum. Elemental analysis could not be obtained for **9d** because of its high sensitivity to air, moisture, and light.

fac-Mo(CO)₃[P(CH₂NPh)₃P]₃ (9e). A solution of Mo(CO)₃-(CHT) (0.034 g, 0.125 mmol) dissolved in CH₂Cl₂ (5 mL) was added to **9a** (0.141 g, 0.375 mmol) dissolved in CH₂Cl₂ (10 mL). The mixture was stirred for 12 h, and then solvent and volatiles were removed under reduced pressure to give a solid which was dissolved in a minimum volume of CH₂Cl₂ and stored at room temperature for several days to obtain crystals of **9e**. Crystals were separated by hand, washed with hexanes, and dried under reduced pressure to give **9e** in 76% yield. Mp: 225 °C (dec). IR (Nujol, cm⁻¹): ν_{CO} 1943 (br, s), 1857 (s, br), 1844 (s). ³¹P{¹H} NMR (CDCl₃): δ 14.1 (br, *P*C₃, 3P), 53.7 (br, *P*N₃, 3P). ¹H NMR (CDCl₃): δ 3.84 (s, NCH₂, 18H), 6.96, 7.24 (m, C₆H₅, 45H). Anal. Calcd for C₆₆H₆₃N₉O₃P₆Mo: C, 60.42; H, 4.84; N, 9.61. Found: C, 60.16/60.11; H, 5.19/5.23; N, 9.43/9.36.

 $(\eta^{5}-C_{5}Me_{5})RuCl[P(CH_{2}NPh)_{3}P]_{2}$ (9f). $(\eta^{5}-C_{5}Me_{5})Ru(COD)Cl$ (0.174 g, 0.458 mmol) and 9a (0.301 g, 0.798 mmol) were charged to a Schlenk flask previously purged with nitrogen. To this was added CH₂Cl₂ (5 mL), and then the mixture was stirred for 12 h. Volatiles were removed under reduced pressure to give a residue that was dissolved in THF (10 mL) and filtered through a Celite pad. The filtrate was cooled to 0 °C for 12 h to give **9f** as an orange powder in 43% yield. Crystals were grown by vapor diffusion of pentane into a THF solution of **9f**. Mp: 248–250 °C (subl). ³¹P-{¹H} NMR (CDCl₃): δ 29.1 (br, *P*C₃, 2P), 55.3 (br, *P*N₃, 2P). ¹H NMR (CDCl₃): δ 1.82 (s, C₅(*CH*₃)₅, 15H), 3.87 (m, N*CH*₂, 12H), 6.95, 7.24 (m, C₆*H*₅, 30H). ¹³C{¹H} NMR (CDCl₃): δ 11.7 (s, C₅-(*CH*₃)₅, 5C), 44.8 (apparent t, ¹*J*_{PC}, ²*J*_{PC} 11.18 Hz, N*CH*₂, 6C), 90.9 (s, *C*₅(CH₃)₅, 5C), 116.3, 116.5, 120.9, 129.5, 147.9, 148.1 (s, *C*₆H₅, 36C). Anal. Calcd for C₅₂H₅₇N₆P₄ClRu: C, 60.84; H, 5.60; N, 8.19. Found: C, 60.59/60.41; H, 5.96/5.93; N, 8.26/8.20.

X-ray Structure Determinations. Crystals suitable for X-ray analysis were selected at room temperature, and air-sensitive samples were selected from under a layer of solvent. All samples were immediately covered with premixed epoxy glue to prevent decomposition. For low-temperature experiments, samples were immediately mounted and centered in the X-ray beam under a stream of cold nitrogen with the aid of a video camera.

Crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer with Mo K α ($\lambda = 0.71073$ Å, graphite monochromator) radiation and a detector-to-crystal distance of 5.03 cm. Three series of ω scans at different starting angles were obtained to analyze the reflection profiles and to estimate the exposure time for data collection. Each series consisted of 30 frames collected at intervals of 0.3° in a 10° range about ω with an exposure time of 10-40 s/frame. Data were obtained using a full sphere routine by harvesting four sets of frames with 0.3° scans in ω with an exposure time 10–30 s/frame. The dataset was integrated with SMART software and analyzed with RLATT²⁵ software to separate the reflections belonging to one crystalline form for further calculations. Those datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements using SADABS software.²⁶

The positions of some core non-hydrogen atoms for all the structures were found by direct methods. The remaining atoms were located in an alternating series of least-squares cycles and difference Fourier maps using SHELX²⁷ software. All non-hydrogen atoms were refined in a full-matrix anisotropic approximation. Typically all other hydrogen atoms were placed in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

Structure 3a: colorless prism obtained by sublimation (0.40 × 0.420 × 0.30 mm); C₃H₆O₃P₂, M = 152.02; orthorhombic at 173 K, space group *Pnm2*₁; a = 8.389(2), b = 5.780(2), c = 6.420(2) Å; Z = 2, V = 311.33(14) Å³; R1 = 0.0307, wR2 = 0.0702, GOF = 1.084.

Structure 8b: colorless block ($0.40 \times 0.40 \times 0.30$); C₆H₁₅N₃-OP₂, M = 207.15; trigonal at 173 K, space group $P\overline{3}$; a = 7.2702-(11), b = 7.2702(11), c = 10.952(2) Å; Z = 2, V = 501.32(14) Å³; R1 = 0.0401, wR2 = 0.1072, GOF = 1.108.

Structure 8f: colorless plate $(0.5 \times 0.43 \times 0.38)$; C₆H₂₁B₂N₃P₂, M = 218.82; orthorhombic at 173 K, space group *Pbca*; a = 13.0587(8), b = 13.2830(8), c = 14.2394(8) Å; Z = 8, V = 2469.9-(3) Å³; R1 = 0.0353, wR2 = 0.1061, GOF = 1.061.

Structure 8i: yellow prism $(0.20 \times 0.20 \times 0.15)$; C₁₆H₁₅N₃O₁₀ P₂W₂, M = 838.95; orthorhombic at 293 K, space group *Pca*2₁; a = 14.4369(8), b = 12.5461(7), c = 13.4794(7) Å; Z = 4, V = 2441.5(2) Å³; R1 = 0.0226, wR2 = 0.0560, GOF = 1.053.

⁽²⁶⁾ Blessing, R. H. Acta Crystallogr. 1995, A51, 33.

⁽²⁷⁾ All software and sources of the scattering factors are contained in the SHELXTL (version 5.1) program library (G. Sheldrick, Bruker Analytical X-ray Systems, Madison, WI).

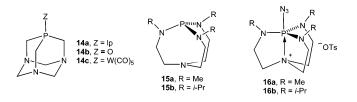
Table 1. Comparison of Pertinent Structural Parameters of 8b,f,i and 9a,d,e,f^a

params	8b	8f	8i	9a	9d	9e	9f
			Distances (A	Å)			
M-PC ₃ ^b		1.906(2) ^c	2.469(2)		2.4741(14) 2.4590(14)	2.4768(6) 2.4958(6) 2.4896(6)	2.2694(12) 2.2830(11)
$M - PN_3^b$		1.893(2) ^c	2.520(2)		2.2075(13) 2.2121(13)	2.1020(0)	
P-C _{avg}	$1.801(3)^d$	1.826(2)	1.80(2)	1.8358(16)	1.843(5) 1.852(5)	1.835(2) 1.844(2) 1.837(2)	1.842(4) 1.841(4)
P-N _{avg}	$1.7069(19)^d$	1.6663(15)	1.645(10)	1.7091(13)	1.677(4) 1.675(4)	1.711(2) 1.714(2) 1.709(2)	1.712(4) 1.714(4)
C-N _{avg}	$1.471(4)^d$	1.478(2)	1.65(3)	1.4738(19)	1.481(6) 1.482(6)	1.458(3) 1.467(3) 1.466(3)	1.473(5) 1.468(5)
₽•••₽	3.016(2)	2.9646(7)	3.062(3)	3.1310(5)	3.059(2) 3.052(2)	3.094(1) 3.110(1) 3.098(1)	3.126(2) 3.123(2)
			Angles (deg	g)			
NPN _{avg}	$101.31(8)^d$	104.41(7)	98.6(8)	99.30(6)	102.0(2) 102.2(2)	100.33(10) 99.31(10) 100.26(9)	98.50(18) 99.23(18)
CPC _{avg}	$102.38(12)^d$	101.00(9)	100.5(1)	97.80(7)	97.6(2) 98.0(2)	99.70(11) 98.82(11) 99.98(10)	97.9(2) 98.3(2)
PNC _{avg}	$120.13(17)^d$	117.2(1)	112.7(1)	118.79(10)	115.9(3) 116.4(3)	120.8(2) 119.4(2) 121.2(2)	118.5(3) 119.2(3)
angle sums around N	351.4	347.2 353.8 353.5	354.5 351.1 350.0	358.2 358.8 357.7	358.9 355.4 358.2 356.7 359.9 359.9	358.5 360.0 359.7 358.1 359.1 356.2 360.0 360.0 359.8	356.2 358.3 359.9 354.7 355.0 359.9

^{*a*} Analogous data for **3a** are as follows: $P-C_{avg}$, 1.844(3) Å; $P-O_{avg}$, 1.611(3) Å; $C-O_{avg}$, 1.453(4) Å; P-P, 3.082(4) Å; PCO_{avg} , 114.2(2)°; CPC_{avg} , 97.06(14)°; OPO_{avge} 102.07(13)°; $P-O-C_{avg}$, 122.15(17)°. ^{*b*} M indicates metal unless stated otherwise. ^{*c*} M indicates boron. ^{*d*} Not an average value because of crystallographic symmetry in the molecule.

Structure 9a: colorless prism $(0.50 \times 0.30 \times 0.20 \text{ mm})$; C₂₁H₂₁N₃P₂, M = 377.35; monoclinic at 293 K, space group $P2_1/n$; a = 10.2430(4), b = 18.6675(8), c = 10.5701(4) Å; $\beta = 109.5599(10)^{\circ;} Z = 4$, V = 1904.49(13) Å³; R1 = 0.0326, wR2 = 0.0993, GOF = 1.039.

Structure 9d: colorless block ($0.40 \times 0.30 \times 0.2$); $C_{46}H_{42}Au_2$ -Cl₂MoN₆O₄P₄, M = 1427.51; monoclinic at 173 K, space group $P2_1/c$; a = 16.0152(8), b = 16.5984(8), c = 18.2588(9) Å; $\beta = 92.0129(10)^\circ$; Z = 2, V = 4850.7(4) Å³; R1 = 0.0304, wR2 = 0.0556, GOF = 1.007.


Structure 9e: colorless air-sensitive block $(0.4 \times 0.3 \times 0.3)$; $C_{66}H_{63}MoN_9O_3P_6$, M = 1312.01; triclinic at 173 K, space group $P\overline{1}$; a = 13.7683(7), b = 16.2735(8), c = 16.8700(9) Å; $\alpha = 78.9063(10)$, $\beta = 89.3240(10)$, $\gamma = 87.4580(10)^\circ$; Z = 2, V = 3705.6(3) Å³; R1 = 0.0393, wR2 = 0.0925, GOF = 1.017.

Structure 9f: orange prism (0.40 × 0.20 × 0.20); C₆₄H₆₉-ClN₆O₃P₂Ru, M = 1230.65; monoclinic at 298 K, space group $P2_1/n$; a = 21.617(3), b = 12.1196(17), c = 25.563(4) Å; $\beta = 109.264(2)^\circ$; Z = 4, V = 6322.4(15) Å³; R1 = 0.0398, wR2 = 0.1127, GOF = 0.949.

Selected molecular geometrical parameters are summarized in Table 1.

Tolman Cone Angles. Using structural parameters obtained from the molecular structures of **3a**, **8b**,**f**,**i**, and **9a**,**d**,**e**,**f**, the Tolman cone angles around the phosphorus atoms in each were calculated, using 1.2 Å as the van der Waals radius of hydrogen, according to a literature method.²⁸ Structural parameters were obtained from molecular structures using the Ghemical-GMS²⁹ molecule building graphics program, and the data were processed using Microsoft Excel.³⁰ The Tolman cone angles were calculated by using a geometrically optimized hydrogen atom inserted in place of exocyclic atoms or lone pairs present on phosphorus atoms in **3a**, **8b**,**f**,**i**, and **9a**,**d**,**e**,**f** to represent a generalized metal atom (M) with an M–P bond length set to 2.28 Å as originally proposed by Tolman³¹ (see Table 2). Tolman cone angles for the molecular structure of Me₃P=O³² (121.07°), **14a** (113.76°),³³ and **14b** (112.97°)³⁴ were calculated from data obtained from the Cambridge Crystallographic Database.

- (28) Mingos, D. M. P.; Müller, T. E. *Transition Met. Chem.* **1995**, *20*, 533–539.
- (29) Acton, A.; Banck, M.; Bréfort, J.; Cruz, M.; Curtis, D.; Hassinen, T.; Heikkilä, V.; Hutchison, G.; Huuskonen, J.; Jensen, J.; Liboska, R.; Rowley, C. *Ghemical-GMS 1.01.06*; University of Iowa, Iowa City, IA, 1998–2003.
- (30) Microsoft Office Excel 2003 SP2(US), Microsoft, Seattle, WA, 1985– 2003.
- (31) Tolman, C. A. Chem. Rev. 1977, 77, 313-348.
- (32) Engelhardt, L. M.; Raston, C. L.; Whitaker, C. R.; White, A. H. Aust. J. Chem. 1986, 39, 2151–2154.
- (33) Fluck, E.; Förster, J.; Weidlein, J.; Hadicke, E. Z. Naturforsch. 1977, 32B, 499–506.
- (34) Darensbourg, D. J.; Yarbrough, J. C.; Lewis, S. J. Organometallics 2003, 22, 2050–2056.

Results and Discussion

Compound 8a and Its Non-Metal Derivatives 8b-g. The reaction of $P[(CH_2OH)_4]_2SO_4$ with excess aqueous methylamine in water gave a mixture containing aminophosphine oligomers and a low conversion to $P(CH_2NHMe)_3$, the starting material for 8a. Although a similar result has been reported for the reaction of P(CH₂OH)₃ with ammonia or primary amines,^{24,35} P(CH₂NHCH₂COOH)₃ was obtained in 82% yield in such a reaction with glycine in water at pH $3-5.^{36}$ Attempts to purify the crude P(CH₂NHMe)₃ by vacuum distillation led to decomposition. Therefore, it was characterized as 8a, whose synthesis was accomplished in 25% overall yield by transaminating the P(CH₂NHMe)₃/ aminophosphine oligomers with P(NMe₂)₃. Compound 8a is a nonviscous liquid (stable to moisture and air for short periods) which slowly oxidizes in the atmosphere to afford the monoxide 8b. Compound 8b can be more efficiently prepared (in 53% yield) by reacting 8a with excess activated MnO₂ under refluxing conditions, under which excess MnO₂ did not oxidize the PN₃ phosphorus of 8a.

The reaction of **8a** with excess elemental sulfur in refluxing benzene gave a complex mixture from which the disulfide **8c** was isolated in 30% yield. While **8a** with 1 equiv of *p*-toluene sulfonyl azide also gave a complex mixture, the same reaction with 2 equiv produced **8d** in quantitative yield. By contrast, the reaction of *p*-toluenesulfonyl azide with the proazaphosphatranes (**15a,b**) afforded the corresponding azido proazaphosphatranes (**16a,b**).²⁵ This result can be rationalized by the unusually sterically congested and electron rich nature of the PN₃ phosphorus in (**15a,b**) compared with the analogous phosphorus in **8a**.²⁵

Interestingly, the PN₃ phosphorus of **8a** reacts with 1 equiv of BH₃·THF to give the monoadduct **8e** in 69% yield and the same reaction with 2 equiv of H₃B·THF furnished the diadduct **8f** in 40% yield. Diadduct **8f** upon treatment with 1 equiv of piperidine at room temperature gave the monoadduct **8e** in quantitative conversion after 2 h as revealed by ³¹P NMR spectroscopy. However, the BH₃ group from the monoadduct **8e** was removed only with difficulty to give **8a**. Thus, **8f** upon treatment with 4 equiv of piperidine at 100 °C afforded **8a** after 15 h, along with small amounts of decomposition products. This displacement experiment suggests that the B←PN₃ bond in **8f** is stronger than the B←PC₃ bond. To the extent that P−B spin−spin coupling correlates with P−B bond strength,³⁷ the higher value of ¹J_{PB} for H₃B·

Table 2. Tolman Cone Angles of PC₃, PN₃, or PO₃ Moieties in the Compounds Investigated

entry	compd	cone angle PC_3 (deg)	cone angle PN_3 or PO_3 (deg)
1	3a	112.46	106.00
2	8b	117.46	163.72
3	8f	120.14	168.56
4	8i	123.44	155.00
5	9a	118.96	214.24
6	9d	119.74	196.06
7	9e	118.70	228.34
8	9f	119.34	219.66

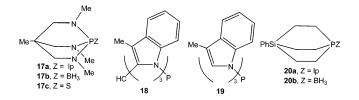
 a All cone angles were measured from an H atom geometrically optimized and constrained to a bond distance of 2.28 Å from the phosphorus atom.

P(NMe₂)₃ (variously reported as 95.0, 96.0, or 98.0 Hz)^{38–40} and for **8e** (87.2 Hz) compared with that displayed by H₃B· PMe₃ (¹J_{PB} = 59.8 Hz)³⁹ also suggests that the B←PN₃ bond is stronger than the B←PC₃ linkage. It appears that perhaps, despite steric pressure from the N–Me groups in **8e**, the B←PN₃ bond is favored over the B←PC₃ linkage by the electron richness of the phosphorus in the former owing to electron induction from the nitrogen lone pairs into the phosphorus.

It has been suggested that the enthalpy of reaction for adduct formation of P(XYZ) (X, Y, Z = alkyl, alkoxy, Me₂N) with B₂H₆ is a reliable measure of the thermodynamic stability of the P-B bond in (XYZ)P•BH₃ adducts but that ${}^{1}J_{PB}$ is not.⁴¹ Although our experiments with piperidine in the displacement of BH₃ from **8e,f** may be taken to indicate that the thermodynamic stability of the P-B bond does follow ${}^{1}J_{PB}$ in these particular compounds, it should be noted that enthalpies measured for the reaction of B_2H_6 with PMe₃ and with P(NMe₂)₃ are within 0.4 kcal/mol of one another (49.9 and 49.53 kcal/mol, respectively)⁴¹ thus rendering any conclusions on these issues tenuous at best. We observed previously that the reaction of 3a with B_2H_6 initially produced BH₃•P(CH₂O)₃P before proceeding to 3h,⁷ and it may be that, like 3a, 8a also initially reacts with 1 equiv of BH₃•THF to form BH₃•P(CH₂NMe)₃P before rapidly isomerizing to 8e. This hypothesis is supported by the reaction of 8a with 1 equiv of 9-BBN to furnish 8g, a reaction that did not go to completion because 8a,g formed an equilibrium mixture that prevented isolation of 8g. The equilibrium between 8a and 8g may be attributable to steric interactions between the methyl groups of 8a and the 9-BBN molecule.

IR and NMR Spectroscopic Studies of 8a–f. The ³¹P NMR spectrum of the mixture of $P(CH_2NHMe)_3$ and aminophosphine oligomers showed a broad peak at -59.9 ppm which is in the expected range for compounds of the type $P(CH_2NH-)_3$.^{17,24,36} The ³¹P NMR spectrum of **8a** displayed an AM pattern consisting of a pair of doublets due to mutual coupling of the two chemically different phosphorus atoms.^{6c,17} The ³¹P chemical shift for the PN₃ phosphorus in **8a** (82.3 ppm) is upfield relative to that for

- (39) Cowley, A. H.; Damasco, M. C. J. Am. Chem. Soc. **1971**, 93, 6815–6821.
- (40) Wrackmeyer, B. Z. Naturforsch., B 1984, 39, 533-534.
- (41) Jugie, G.; Jouany, C.; Elegant, L.; Gal. J. F.; Azzaro, M. Bull. Soc. Chim. Fr. 1976, (1–2), part 1, 1–4.


⁽³⁵⁾ Daigle, D. J.; Frank, A. W. Text. Res. J. 1982, 52, 751-755.

⁽³⁶⁾ Berning, D. E.; Katti, K. V.; Barnes, C. L.; Volkert, W. A. J Am. Chem. Soc. 1999, 121, 1658–1664.

⁽³⁷⁾ Rudolph, R. W.; Schultz, C. W. J. Am. Chem. Soc. 1971, 93, 6821– 6822.

⁽³⁸⁾ Noth, H.; Vahrenkamp, H. Chem. Ber. 1966, 99, 1049-1067.

P(NMe₂)₃ (δ_P 123.0 ppm⁴²). We are unable to associate this upfield shift with a significant change in the average NPN angle in **8a** {which is probably close to those in **9a** [99.30-(6)°] and **8b** [101.31(8)°] (see below)} relative to that in P(NMe₂)₃ [average NPN angle = 102.0(2)°⁴³]. A similar upfield shift for **17a** (δ_P 83.5 ppm) was reported on the basis of a presumed decrease in the NPN angles relative to P(NMe₂)₃⁴⁴ and for **18** (δ_P 22.3 ppm) relative to **19** (δ_P 64.8 ppm).⁴⁵

The δ_P value for the PC₃ phosphorus in **8a** (δ_P –53.1 ppm) is shifted downfield relative to acyclic PMe₃ (δ_P –62.0 ppm)⁴² and **20a** (δ_P –59.2 ppm).⁴⁶ The CPC angle in PMe₃ [calculationally optimized average CPC angle = 99.4°;⁴⁷ X-ray diffractionally determined CPC angle = 99.1(1)–99.4-(1)°;⁴⁸ electron diffractionally determined average CPC angle = 98.6(3)°⁴⁹] are all within 1° of that in **9a** [average CPC angle = 97.80(7)° (see below)].

The average CPC angle in **20a** is $100.9^{\circ.46}$ It therefore appears that more subtle effects are responsible for these shift differences than small changes in bond angles. Thus, for example, the average CPC angle in **14a** $[96.1(1)^{\circ}]^{33}$ is within experimental error of that in **9a** and yet the δ_P for the PC₃ phosphorus in **14a** (-98.3 ppm)⁵⁰ is ca. 53.0 ppm further upfield of that in **9a** (-45.3 ppm^{6c,17}). The δ_P value for the PC₃ phosphorus in **8a** (-53.1 ppm) is shifted upfield by only 7.8 ppm relative to that in **9a** (-45.3 ppm^{6c,17}) while that of the PN₃ phosphorus in **8a** (82.3 ppm) is significantly shifted downfield by 32.6 ppm from the corresponding phosphorus in **9a** (49.7 ppm^{6c,17}), indicating considerable sensitivity of the chemical shifts of the PN₃ phosphorus to the influence of the orientation and the nature of the carbon substituents and of the lone pairs on the nitrogens.

The ³¹P NMR spectra of **8c,d** also consisted of pairs of doublets with δ_P values corresponding to the PC₃ phosphorus in each case appearing significantly downfield relative to that in **8a**, while those of the PN₃ phosphorus in both compounds appear at relatively high field. These results are consistent with the reported relative δ_P values between P(NMe₂)₃ and S=P(NMe₂)₃,⁴² between **11** and the disulfide

- (42) Tebby, J. C. Handbook of Phosphorus-31 Nuclear Resonance Data; CRC Press: Boca Raton, FL, 1991; Chapter 5, p 93, Chapter 6, p 121, and Chapter 9, p 227.
- (43) Mitzel, N. W.; Smart, B. A.; Dreihäupl, K-H.; Rankin, D. W. H.; Schmidbaur, H. J. Am. Chem. Soc. 1996, 118, 12673–12682.
- (44) Kroshefsky, R. D.; Verkade, J. G. Inorg. Chem. 1975, 14, 3090-3095.
- (45) Barnard, T. S.; Mason, M. R. Organometallics 2001, 20, 206-214.
- (46) Ochida, A.; Hara, K.; Ito, H.; Sawamura, M. Org. Lett. 2003, 5, 2671– 2674.
- (47) Suresh, C. H.; Koga, N. Inorg. Chem. 2002, 41, 1573-1578.
- (48) Bruckmann, J.; Kruger, C. Acta Crystallogr. 1995, C51, 1155–1158.
- (49) Bartell, L. S. J. Chem. Phys. **1959**, 32, 512–515.
- (50) Daigle, D. J. Inorg. Synth. 1998, 32, 40-45.

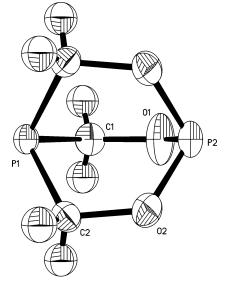


Figure 1. ORTEP view of structure 3a at the 50% probability level.

of **11**,^{19a,19b,51} between PMe₃ and S=PMe₃,⁴² and between **17a** and **17c**.^{44,51} Interestingly, ³*J*_{PP} values of 107.8 and 115.1 for **8c**,**d**, respectively, are comparable to those reported for **8j** (116.6 Hz) and **8k** (114.6 Hz)²⁵ but are significantly higher than that observed for **8a** (²*J*_{PP} 26.6 Hz).

The ³¹P NMR spectrum of **8e** showed a doublet for the PC₃ phosphorus with an unusually low ³¹P-³¹P spin-spin coupling (8.6 Hz) and four equally intense lines for the PN₃ phosphorus due to coupling with the ¹¹B (I = 3/2) nucleus (¹J_{PB} = 88.5 Hz). Binding of the BH₃ moiety to the PN₃ phosphorus in **8e** is consistent with its ¹¹B NMR spectrum that features a doublet centered at -43.4 ppm (¹J_{PB} 87.2 Hz) lying very close to the ¹¹B NMR chemical shifts (-45 ± 5 ppm) recorded for phosphine-borane adducts.⁵²

The ${}^{1}J_{PB}$ value of 88.5 Hz for **8e** is greater than that reported for **17b** (${}^{1}J_{PB} = 77.0 \text{ Hz}$) 19c but smaller than those reported for H₃B·P(NMe₂)₃ (variously reported as ${}^{1}J_{PB} =$ 95.0, 96.0, and 98.0 Hz) ${}^{38-40}$ and the BH₃ adduct of **15a** (${}^{1}J_{PB}$ 109.0 Hz). 53 To the extent that the values of ${}^{1}J_{PB}$ for these monoadducts can be correlated with the dative P–B bond strength, 37 the order **17b** < **8e** < H₃B·P(NMe₂)₃ < **15a**·BH₃ emerges, which is consistent with an increasing order of Lewis basicity for the PN₃ phosphorus in the order **17a** < **8a** < P(NMe₂)₃ < **15a**.

X-ray Structure Analyses of 3a, 9a, and 8b,f. Computer drawings of the molecular structures for these compounds are shown in Figures 1–4, respectively. The nonbonded P· ••P distance, 3.082(4) Å in **3a** (Figure 1), is slightly shorter than that reported for **4a** [3.132(1) Å].¹⁴ The greater length of this distance in **3a** than those reported for **3f** [2.994(3) Å],⁸ **3u** [3.025(5) and 3.022(5) Å for the PO₃ and the PC₃ phosphorus-coordinated ligands, respectively],¹¹ and P[C{-

- (52) Brunel, J. M.; Faure, B.; Maffei, M. Coord. Chem. Rev. 1998, 178– 180, 665–698.
- (53) Gudat, D.; Lensink, C.; Schmidt, H.; Xi, S.-K.; Verkade, J. G. Phosphorus, Sulfur, Silicon Relat. Elem. 1989, 41, 21–30.

⁽⁵¹⁾ White, D. W.; Karcher, B. A.; Jacobson, R. A.; Verkade, J. G. J. Am. Chem. Soc. 1979, 101, 4921–4925.

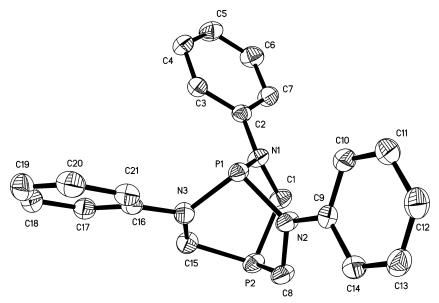


Figure 2. ORTEP view of structure 9a at the 50% probability level. Hydrogen atoms are omitted for clarity.

 C_{1} P_{1} C_{2} N_{2} C_{3} C_{4} C_{4

Figure 3. ORTEP view of structure 8b at the 50% probability level. Hydrogen atoms are omitted for clarity.

 $(CF_2)_2H$ HO]₃P=O [3.036(3) Å]⁵⁴ is made reasonable by the compression of this distance expected upon coordination/ oxidation of phosphorus, which is expected to increase the angles inside the cage around the phosphorus. Thus, the average OPO angle in **3a** [102.07(13)°] enlarges in **3f** [106.1-(2)°]⁸ and in the PO₃ phosphorus-coordinated ligand in **3u** [104.2(4)°].¹¹ The nonbonded P···P distances in **3a**, **3f**, P[C{-(CF₂)₂H}HO]₃P=O, and **4** are shorter than the sum of the Van der Waals radii of 3.70 Å for two phosphorus atoms but longer than the normal P–P single bond of 2.21 Å.⁵⁵

Figure 4. ORTEP view of structure 8f at the 50% probability level showing atom numbering.

The P=O distance [1.485(4) Å] and CPC bond angle [102.38(12)°] in **8b** compare with 1.489(6) Å and 105.8(3)° in O=PMe₃, respectively,³² and with 1.476(2) Å and 100.2-(1)° in **14b**, respectively.⁵⁸ Although two different P–N bond lengths [1.683(3) and 1.732(3) Å] as well as two different angle sums around the nitrogens [336.7 and 356°]⁴³ were reported for P(NMe₂)₃, all the P–N bonds in **8b** (Figure 3) are equal [1.706(19) Å] as are also the angle sums for all three nitrogens in **8b** (351.4°) owing to crystallographic symmetry. The nonbonded P····P distance in **8b** [3.016(2) Å] is shorter than that found in **9a** [3.1310(5) Å] owing to oxidation of one of the phosphorus atoms in the former (see below).

Unlike **8b** and **9a** (see below), the structure of **8f** (Figure 4) contains one P–N bond length that is somewhat longer [1.676(1) Å] than the others [1.661(2), 1.662(2) Å] as was also reported for H₃B•P(NMe₂)₃ [1.683(1), 1.658(1), and

⁽⁵⁴⁾ Zub, Y. L.; Skopenko, V. V.; Fundamenskii, V. S.; Markovskii, L. N.; Danchenko, E. A.; Shermolovich, Y. G. Zh. Strukt. Khim. 1987, 28, 163–165.

⁽⁵⁵⁾ Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Principles of Structure and Reactivity, 4th ed.; Harper Collins College Publishers: New York, 1993; p 290.

⁽⁵⁶⁾ Van Doorne, W.; Hunt, G. W.; Parry, R. W.; Cordes, A. W. Inorg. Chem. 1971, 10, 2591–2594.

⁽⁵⁷⁾ Cordes, A. W.; Fair, C. K.; Bermann, M.; Van Wazer, J. R. J. Cryst. Mol. Struct. 1975, 5, 279–285.

⁽⁵⁸⁾ Jogun, K. H; Stezowski, J. J; Fluck, E; Weidlein J. *Phosphorus Sulfur* 1978, 4, 199–204.

1.650(1) Å].⁵⁹ The geometry of the nitrogens in 8f also deviates significantly from planarity (angle sums = 347.2, 353.8, and 353.5°) as is also the case for $H_3B \cdot P(NMe_2)_3$ (angle sums = 343.1, 353.3, and 359.8°).⁵⁹ These distortions in trisaminophosphines have been ascribed to electron donation of the unhybridized p-orbital lone pairs on the two virtually planar nitrogens to the phosphorus.⁶⁰ The phosphorus electron density is thus "saturated" to the point where the nitrogen in the remaining longer bonded P-N linkage is free to adopt a pyramidal geometry normally associated with an amino nitrogen. Because of the bicyclic structure of **8f**, its reduced symmetry around the PN_3 phosphorus could be ascribed to crystallographic packing effects. The N₃P-B distance in **8f** [1.893(2) Å] is slightly shorter than that reported for H₃B·P(NMe₂)₃ [1.913(1) Å],⁵⁹ and it is significantly shorter than that reported for 17b [1.98(3) Å].⁶¹ The C_3P-B distance in **8f** [1.906(2) Å] is comparable to that reported for H₃B•PMe₃ [1.892 (7) Å]⁶² but smaller than that found in **20b** [1.922(2) Å].⁴⁶ The nonbonded P····P distance in **8f** [2.9646(7) Å] is significantly shorter than that observed for **9a** [3.1310(5) Å] and **8b** [3.016(2) Å], which can be associated with the opening of the NPN bond angle from 9a and 8b to 8f.

The phenyls in **9a** (Figure 2) form a paddle wheel arrangement around the cage with the average P–N distance [1.7091(13) Å, Table 1], and the geometry of the nitrogens (angle sums = 358.3, 358.8, and 357.7°) closely resembles those in **18** [1.708(2) Å; 357.5, 359.8, and 360°].⁴⁵ The nonbonded P•••P distance in **9a** [3.1310(5) Å], however, might appear to be longer than those found in **11** (2.99 Å),⁵⁶ in the diiminophenyl derivative of **11** (2.844 Å)⁵⁷ and in the dioxide of **11** (2.82 Å),^{19e} although esd values could not be found for these derivatives of **11** for comparison.

Transition Metal Complexes of 8a,b and 9a. The PC₃ phosphorus of **8a** reacts with $W(CO)_5(THF)$ in THF to give **8h** (48% yield) as the only product, in contrast to our earlier report of the reaction between $W(CO)_5(aniline)$ and **3a** in 1:1 ratio that produced a mixture of **3n,q** in variable yield.¹⁰ The uncoordinated PN₃ phosphorus of **8h** reacts with $W(CO)_5(THF)$ in THF to afford **8i** in quantitative yield. The selectivity to give **8h** prior to forming **8i** may be associated with steric pressure from the methyl groups in **8a**.

The contrasting stereoselectivity in the reaction of **8a** with BH_3 •THF and with $W(CO)_5$ (THF) deserves comment. Apparently the PN₃ phosphorus is more basic than the PC₃ phosphorus in **8a** because of the inductive effect of the 2p nitrogen lp on the planar nitrogen in each of the NMe groups. As a result, the PN₃ phosphorus in **8a** preferentially reacts with the soft Lewis acid BH_3 •THF to form the adduct **8e**,

- (59) Mitzel, N. W.; Lustig, C. J. Chem. Soc., Dalton Trans. 1999, 3177– 3183.
- (60) (a) Clarke, M. L.; Cole-Hamilton, D. J.; Slawin, A. M. Z.; Woollins, J. D. Chem. Commun. 2000, 2065–2066. (b) Clarke, M. L.; Cole-Hamilton, D. J.; Woollins, J. D. J. Chem. Soc., Dalton Trans. 2001, 2721–2723. (c) Kárpáti, T.; Veszprémi, T.; Thirupathi, N.; Liu, X. Wang, Z.; Ellern, A.; Nyulászi, L.; Verkade, J. G. J. Am. Chem. Soc. 2006, 128, 1500–1512.
- (61) Clardy, J. C.; Kolpa, R. L.; Verkade, J. G. Phosphorus 1974, 4, 133– 141.
- (62) Ijima, K.; Hakamata, Y.; Nishikawa, T.; Shibata, S. Bull. Chem. Soc. Jpn. 1988, 61, 3033–3036.

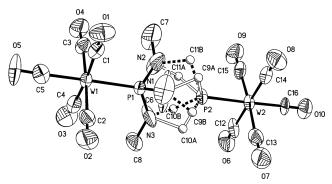
whereas the less sterically hindered PC₃ phosphorus of 8a binds preferentially with the sterically crowded W(CO)₅ moiety (also a soft Lewis acid) to form 8h. The IR spectrum of **8h** showed three v_{CO} bands (2072, 1943, 1913 cm⁻¹) characteristic for (OC)₅W(PR₃).^{34,63} These values are lower than those for (OC)₅W(PMe₃) (ν_{CO} 2073, 1952, 1942 cm^{-1 63}) suggesting that the PC_3 phosphorus in **8a** may be a somewhat a better σ -donor/poorer π -acceptor than PMe₃. Two of the three IR frequencies for the CO groups in 8h are lower than those for **14c** (2072, 1955, 1944 cm⁻¹).³⁴ The smaller ${}^{1}J_{WP}$ value of 8h (118.0 Hz) than that for (OC)₅W(PMe₃) (230 $Hz)^{64}$ and 14c (218.2 Hz) is not readily interpretable in terms of relative bonding characteristics of the ligands. The CPC angle in **14c** $[96.1(1)^{\circ}]^{34}$ is smaller than that in **8i** [100.5-(1)°, Table 1], and the W–P distance [2.4976(15) Å] in **14c** is slightly longer than in 8i [2.469(2) Å] (see below).

The reaction of Mo(CO)₄(NBD) with 2 equiv of 9a in CH₂-Cl₂ produced **9b** in 82% yield. In the analogous reactions involving 3a and group VI metal tetracarbonyl precursors, PO_3 phosphorus coordination was realized in **3w** whereas PC₃ phosphorus coordination was preferred in 9b,e,f (see below). This difference is also easily rationalized on steric grounds. A reaction of equimolar quantities of Mo(CO)4-(NBD) and **9a** in CH₂Cl₂ at ambient temperature gave **9b** according to ³¹P NMR spectroscopy instead of the intended square macrocycle cyclo-{Mo(CO)₄[P(CH₂NPh)₃P]}₄ analogous to rings of type **3v** realized with **3a**.⁹ Further, a reaction of equimolar quantities of $Mo(CO)_6$ and **9a** in refluxing toluene for 12 h again produced 9b as the only species detectable by ³¹P NMR spectroscopy. The favored formation of cis-disubstituted 9b under the latter conditions is quite remarkable, since we know of no report of the analogous reaction product being synthesized in a reaction of $M(CO)_6$ (M = Cr, Mo, W) with PMe₃, except after prior formation of a cis-M(CO)₄(diene) intermediate, as has long been known.^{65a,65b} cis-M(CO)₄(PMe₃)₂ complexes (M = Mo, W) have been similarly synthesized by electrolysis of a mixture of Mo(CO)₆/THF followed by addition of PMe₃,⁶⁶ and *cis*-Cr(CO)₄(PMe₃)₂ has been made by electrolysis of Cr(acac)₃ in the presence of CO and PMe₃.⁶⁷ The favored formation of cis-disubstituted 9b in refluxing toluene is also noteworthy because $cis-M(CO)_4(PMe_3)_2$ (M = Cr, Mo, W) readily isomerize to their respective trans isomers above 50 °C.68 Three of the four CO stretching frequencies in 9b (1950, 1931, 1924, 1893 cm^{-1}) are larger than those in *cis*-Mo-(CO)₄(PMe₃)₂ [(2016, 1910, 1896, 1874 cm⁻¹),^{65b} but only two of the four CO stretching frequencies in 9b are larger than that recorded elsewhere for cis-Mo(CO)₄[PMe₃]₂ (2019,

- (64) Stelzer, O.; Unger, E. Chem. Ber. 1975, 108, 1246-1258.
- (65) (a) Mathieu, R.; Poilblanc, R. C. R. Acad. Sci., Ser. C 1967, 264, 1053–1056. (b) Jenkins, J. M.; Moss, J. R.; Shaw, B. L. J. Chem. Soc. A 1969, 2796–2800.
- (66) Grobe, J.; Zimmermann, H. Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1981, 36B, 301–306.
- (67) Grobe, J.; Zimmermann, H. Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1980, 35B, 533–538.
- (68) Apel, C., J.; Bacher, R.; Grobe, J.; Le Van, D. Z. Anorg. Allg. Chem. 1979, 453, 39–52.

⁽⁶³⁾ Cotton, F. A.; Darensbourg, D. J.; Kolthammer, B. W. S. Inorg. Chem. 1981, 20, 4440–4442.

Phosphorus Ligation Properties in P(CH₂NR)₃P


1922, 1905, 1899 cm⁻¹)].⁶⁹ These data do not permit any conclusion regarding the relative σ -donor/ π -acceptor properties of **9a** versus PMe₃.

The reaction of **9b** with 1 equiv of AuCl(Me₂S) in chloroform produced **9c** as shown by ³¹P NMR spectroscopy, and the same reaction with 2 equiv of AuCl(Me₂S) in chloroform for 2 h produced **9d**. Both **9c**,**d** are sensitive to air, moisture, and light, which precluded satisfactory elemental analyses.

The reaction of Mo(CO)₄(NBD) with 2 equiv of 8b in CHCl₃ furnished a cis-trans mixture of 81 in 32% yield. The IR spectrum of 81 showed six well-separated CO bands (2029, 2022, 1924, 1907, 1889, 1878 cm⁻¹) which contrasts the three or four CO bands reported for cis-Mo(CO)₄- $[P(NMe_2)_3]_2$,^{64,70,71} the three CO bands (and sometimes one band) reported for *trans*-Mo(CO)₄[P(NMe₂)₃]₂,^{19c} and the three (or sometimes two) CO bands reported for trans-Mo-(CO)₄[P(NMeCH₂)₃CMe]₂.^{19c} The observation of six CO bands for 81 is consistent with a mixture of cis and trans isomers. It was previously found that cis-Mo(CO)₄[P(NMe₂)₃]₂ is stable in the solid state. However, this compound does isomerize to its trans isomer over 30 min in benzene at room temperature, although, interestingly, the more sterically hindered cis-Mo(CO)₄[P(NMePh)₃]₂ did not isomerize in toluene even after refluxing for 24 h.70,72

The reaction of Mo(CO)₃(CHT) with 3 equiv of 9a in dichloromethane produced 9e in 76% yield. Its fac coordination geometry (see below) is supported by the three CO frequencies in its IR spectrum (1943, 1857, 1844 cm⁻¹). The $\nu_{\rm CO}$ values of **9e** are higher than those reported for *fac*-[Mo-(CO)₃(PMe₃)₃] (1927, 1828 cm⁻¹)^{65b} and fac-[Mo(CO)₃- $(14a)_3$] (1930, 1840 cm⁻¹)⁷³ here indicating a poorer σ -donor/ better π -acceptor nature of the PC₃ phosphorus in **9a** relative to PMe₃ and 14a for reasons that are not clear. The reaction of $(\eta^5-C_5Me_5)RuCl(COD)$ with **9a** in a 1:2 molar ratio in dichloromethane produced 9f in 43% yield, and the same reaction in a 1:1 molar ratio also gave 9f (as indicated by ³¹P NMR spectroscopy) instead of the macrocycle cyclo-{- $(\eta^5-C_5Me_5)RuCl[P(CH_2NPh)_3P]$ ₆. The structures of the products obtained from reactions of 9a or 8a with appropriate metal precursors suggest that the NR organic substituents in these diphosphorus cages do not favor cyclic oligomers because of interligand mutual steric interference in such structures, as space-filling models confirm.

X-ray Structure Analyses of 8i and 9d,e,f. The molecular structures of these compounds are shown in Figures 5-8, respectively, and parameters pertinent for comparisons among these molecules are listed in Table 1. The W–PC₃

Figure 5. ORTEP view of structure **8i** at the 50% probability level. Hydrogen atoms are omitted for clarity. For the disordered positions of atoms thermal ellipsoids were substituted by a "ball" representation. "Disordered" positions are drawn with open and dashed lines.

distance of 2.469(2) Å in 8i is shorter than that reported for (OC)₅W(PMe₃) [W-P, 2.516(2) Å]⁶³ and for **14c** [W-P, 2.4976(15) Å]³⁴ providing further support of the greater σ -donor/poorer π -acceptor properties of the P(CH₂CH₂-NMe)₃PW(CO)₅ ligand. The large standard deviation in the trans-W-C distance in 8i prevented comparisons. The geometry around the molybdenum in 9d (Figure 6) is close to octahedral, and that of each gold atom is almost linear $[P(2)-Au(1)-Cl(1) = 173.82(5)^{\circ}, P(4)-Au(2)-Cl(2) =$ 178.74(5)°]. The average Mo-PC₃ distance, 2.4665(14) Å, in 9d is shorter, but the average trans-Mo-C distance of 1.998(5)Å is slightly longer in **9d** than that reported for *cis*-Mo(CO)₄(PMe₃)₂ [average Mo–P and average *trans*-Mo–C distances are 2.522(1) and 1.971(5) Å, respectively]⁶⁹ a result which is also consistent with the greater σ -donor/poorer π -acceptor properties of **9a**. As a result of PN₃ coordination to gold, the average P-N distance [1.677(4), 1.675(4) Å in ligands 1 and 2, respectively] and the nonbonded P···P distances [3.059(2), 3.052(2) Å in ligands 1 and 2, respectively] in 9d are shorter than those observed for 9a [1.7091-(13) and 3.1310(5) Å, respectively]. The average P–N distance in 9d is slightly longer than that reported for $(Me_2N)_3PAuCl$ [average P-N = 1.65(1) Å].⁷⁴ The geometry of one of the three nitrogens in 9d deviates slightly from planarity (angle sums = 355.4, 356.7° in ligands 1 and 2, respectively) while the other two nitrogens possess virtually planar geometries (angle sums = 358.9, 358.2° in ligand 1; 359.9, 359.9° in ligand 2].

The *fac* molybdenum complex **9e** features three PC₃ **9a** ligand moieties (Figure 7). The Mo–P and *trans*-Mo–C distances in **9e** [1.9857(3) and 2.4874(6) Å] differ significantly from the corresponding distances in *fac*-Mo(CO)₃-(**14a**)₃ [1.964(8) and 2.494(3) Å].⁷³ The longer Mo–P and shorter *trans*-Mo–C distances in **9e** is consistent with the aforementioned conclusion based on $\nu_{\rm CO}$ values that ligand **9a** is a poorer σ -donor/better π -acceptor than **14a**. The structure of **9f** (Figure 8) resembles the three-legged piano stool structure found for (η^5 -C₅Me₅)RuCl(PMe₃)₂.⁷⁵ The average Ru–P distance in **9f** [2.2762(11) Å] is shorter than

⁽⁶⁹⁾ Cotton, F. A.; Darensbourg, D. J.; Klein, S.; Kolthammer, B. W. S. *Inorg. Chem.* **1982**, *21*, 2661–2666.

⁽⁷⁰⁾ Ogilvie, F. B.; Jenkins, J. M.; Verkade, J. G. J. Am. Chem. Soc. 1970, 92, 1916–1923.

⁽⁷¹⁾ Ogilvie, F. B.; Keiter, R. L.; Wulfsberg, G.; Verkade, J. G. Inorg. Chem. 1969, 8, 2346–2349.

⁽⁷²⁾ King, R. B. Inorg. Chem. 1963, 2, 936-944.

⁽⁷³⁾ Alyea, E. C.; Ferguson, G.; Kannan, S, *Polyhedron* **1997**, *16*, 3533–37.

⁽⁷⁴⁾ Bauer, A.; Mitzel, N. W.; Schier, A.; Rankin, D. W. H.; Schmidbaur, H. Chem. Ber./Recueil 1997, 130, 323–328.

⁽⁷⁵⁾ Smith, D. C.; Haar, C. H.; Luo, L.; Li, C.; Cucullu, M. E.; Mahler, C. H.; Nolan, S. P. Organometallics **1999**, *18*, 2357–2361.

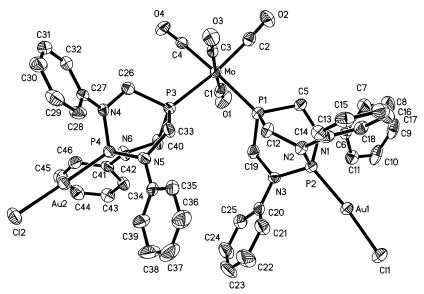
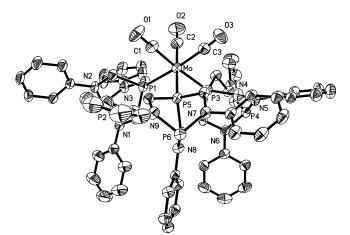



Figure 6. ORTEP view of structure 9d at the 50% probability level. Hydrogen atoms are omitted for clarity.

Figure 7. ORTEP view of structure **9e** at the 50% probability level. Hydrogen atoms are omitted for clarity.

that in (η^{5} -C₅Me₅)RuCl(PMe₃)₂ [average Ru-P = 2.2969-(9) Å]⁷⁵ and (η^{5} -C₅Me₅)RuCl(**14a**)₂ [average Ru-P = 2.2858(15) Å]⁷⁶ a result that suggests better σ -donor/poorer π -acceptor properties of **9a** relative to PMe₃.

Tolman Cone Angles for 3a, 9a, 8b,f,i, and 9d,e,f. The Tolman cone angles for the PC₃, PO₃, and PN₃ moieties in Table 2 can be compared with those found in the literature for the analogous acyclic phosphorus ligands which are PMe₃ [118(4)° from CPK models;³¹ 113(2)° from X-ray results;⁴⁸ 117° via MM2 calculations⁷⁷], P(OMe)₃ [107(4)°³¹], and P(NMe₂)₃ [157(4)°³¹]. The X-ray-derived PC₃ cone angles for all the compounds in Table 2 except **8i** are within 3 × the esd of that for PMe₃. It is not clear why the PC₃ cone angle for **8i** is ca. 4° larger than the upper limit (119°) of the error range. Nonetheless, it is interesting that despite the changes in polarizing power of the Z groups on P in Table 2, these cone angles remain rather constant. Thus, despite

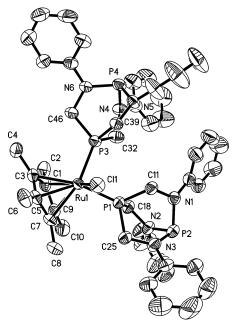


Figure 8. ORTEP view of structure 9f at the 50% probability level. Hydrogen atoms are omitted for clarity.

the significant polarizing power of the oxygen ligand in 8b (which opens the CPC angle via rehybridization) from 97.80- $(7)^{\circ}$ in **9a** to $102.38(12)^{\circ}$ in **8b**, the cone angles for their respective $ZP(CH_2)_3$ moieties are within 2° of one another. The effect on cone angle of the rehybridization effect is clearly seen in a comparison of PMe₃ with O=PMe₃, however, in which the cone angle increases from 113(2) in the former to 121.07° in the latter while the CPC bond angles increase from 99.1(11) and 99.4(1)° in the former to 105.8- $(3)^{\circ}$ in the latter.³² Due to constraint in the bicvclic framework, this effect is not seen from 9a to 8b (Table 2). The small cone angle for 14c (112.97°) compared with that for the PC_3 phosphorus in **8i** (123.44°) is somewhat curious. Not unexpectedly, the cone angle in **14a** $(113.76^{\circ})^{33}$ is close to that in $14c^{34}$ as are their respective CPC angles (97.37) and 96.06°).

⁽⁷⁶⁾ Akbayeva, D. N; Gonsalvi, L; Oberhauser, W; Peruzzini, M; Vizza, F; Brüggeller, P; Romerosa, A; Sava G; Bergamo, A. Chem. Commun. 2003, 264–265.

⁽⁷⁷⁾ Chin, M.; Durst, G. L.; Head, S. R.; Bock, P. L.; Mosbo, J. A. J. Organomet. Chem, 1994, 470, 73–85.

Phosphorus Ligation Properties in P(CH₂NR)₃P

The average NPN angle in 9a [99.30(6)°, Table 1] is within 2.5° of that in P(NMe₂)₃ (102.1°).⁴³ The latter value is an average of the two N_{ip} -P- N_{oop} angles (97.7°) and the N_{oop} - $P-N_{oop}$ angle (110.8°), where ip and oop denote the in-plane and out-of-plane angles relative to the mirror plane, respectively, present in this C_s symmetric molecule. The average O-P-O angle in bicyclic **3a** $[102.07(13)^\circ, \text{ Table 1}]$ is virtually the same as that of the P(OMe)₃ conformer [102.1-(9°)] present in the highest mole fraction (0.73, antigauche-gauche in the gas phase).78 Thus, incorporating an acyclic PC₃, PN₃, or PO₃ acyclic framework into a bicyclo-[2.2.2] octane structure such as **3a** or **9a** appears to result in only small changes in the corresponding C-P-C, N-P-N, or O–P–O angles. Formation of the bicyclic framework also does not seem to significantly alter the average P-O-C angle from that in P(OMe)₃ [118.79(10)°]⁷⁸ to **3a** [122.15- $(17)^{\circ}$, Table 1] (whose values are within 2.6° of each other, when $3 \times \text{esd}$ values are taken into account), nor the P-N-C angle in **9a** $[118.79(10)^{\circ}]$ from that in P(NMe₂)₃ [118.8°].⁴³ Because of the proximity of the nitrogen substituents R in the P(NR)₃ fragments (or lack of R in the case of **3a**), the cone angle at $PO_3/P(NR)_3$ in Table 2 varies from 106° (PO₃) to $155-169^{\circ}$ [P(NMe)₃] to angles exceeding 180° (i.e., inverted cone angles) for P(NPh)₃.

Summary and Conclusions

The ${}^{1}J_{BP}$ data for the BH₃ adducts of P(CH₂NMe)₃P (8a) are consistent with the PN₃ Lewis basicity order MeC(CH₂-NMe)₃P (17a) < P(CH₂NMe)₃P (8a) < (Me₂N)₃P < 15a N(CH₂CH₂NMe)₃P. Furthermore, results of borane displacement experiments on H₃BP(CH₂NMe)₃PBH₃ (8f) with piperidine suggest that the B←PN₃ bond in 8f is stronger than the B←PC₃ bond. Preferential PN₃ phosphorus coordination to BH₃ may be associated with back-bonding effects from the σ B−H BMOs into phosphorus orbitals, as has been invoked to account for the stability of F₃PBH₃.⁷⁹ Such effects would be expected to be much less for 8f than for F₃PBH₃, although these influences would be facilitated by the unusually short N₃P−B distance in 8f as discussed earlier.

The formation of *cis*-Mo(CO)₄[P(CH₂NPh)₃P]₂ (**9b**) and *cis*-Mo(CO)₄[P(OCH₂)₃P]₂ (**3w**) highlights the importance of steric versus electronic (presumably ligand π -acceptor) effects in the ligation of a (PhN)₃P moiety versus a PO₃ fragment. The lower ν_{CO} IR frequencies of W(CO)₅P(CH₂-NMe)₃P (**8h**) than those for W(CO)₅PMe₃ suggest that the PC₃ phosphorus in **8a** is a better σ -donor/poorer π -acceptor than PMe₃, a conclusion supported by the shorter W–PC₃ distance in W(CO)₅P(CH₂NMe)₃PW(CO)₅ (**8i**) than in (OC)₅W(PMe₃)⁶³ and in **14c**.³⁴ A similar argument based on the shorter average $Mo-PC_3$ distance in *cis*-Mo(CO)₄- $[P(CH_2NPh)_3PAuCl]_2$ (9d) compared with *cis*-Mo(CO)₄- $(PMe_3)_2$ and the shorter average Ru-P distance in $(\eta^5-C_5Me_5)$ -Ru[P(CH₂NPh)₃P]₂ (9f) compared with $(\eta^5-C_5Me_5)RuCl$ - $(PMe_3)_2$ leads to the same conclusion for ligand 9a. In contrast, the higher v_{CO} IR frequencies observed for fac- $Mo(CO)_3[P(CH_2NPh)_3P]_3$ (9e) compared with fac-[Mo(CO)_3- $(PMe_3)_3$ and fac- $[Mo(CO)_3(14a)_3]$ and the longer Mo-P and shorter trans-C≡O distances in 9e compared with fac-Mo- $(CO)_3(14a)_3$ are consistent with poorer σ -donor/better π -acceptor properties for 9a than for PMe₃ or 14a. The reason for this behavior in 9e is not obvious. Perhaps mutual steric interactions among three phosphorus ligands in the fac configuration are particularly intense for 9a with its paddle wheel arrangement of three phenyl groups, thus lengthening the Mo-P bond.

The X-ray-derived PC₃ cone angles for all the compounds in Table 2 except **8i** are within $3 \times$ the esd of that for PMe₃. It is unclear why the PC₃ cone angle for **8i** is ca. 4° larger than the upper limit (119°) of the error range. Nonetheless, it is interesting that despite changes in polarizing power of the Z groups on the phosphorus in Table 2, the cone angles remain rather constant owing to constraint imposed by their bicyclic structures. Thus, the oxygen in O=P(CH₂NMe)₃P (**8b**) opens the CPC angle by ca. 3° relative to **9a**, yet the cone angles for their ZP(CH₂)₃ moieties are within 2° of one another. However, from PMe₃ to O=PMe₃, the CPC angle opens ca. 7° and the cone angle increases about 8°.

The greater electronegativity of the PN₃ than the PC₃ phosphorus in **8a** is supported by the smaller value of ${}^{1}J_{PW}$ for the PC₃ (91.2 Hz) than that for the PN₃ (179.9 Hz) phosphorus in **8i**. The same relationship holds for ${}^{1}J_{PW}$ in Me₃PW(CO)₅ (${}^{1}J_{PW} = 230 \text{ Hz})^{64}$ compared with (Me₂N)₃-PW(CO)₅ (${}^{1}J_{PW} = 314 \text{ Hz}$) and MeC(CH₂NMe)₃PW(CO)₅ (${}^{1}J_{PW} = 321 \text{ Hz}$).^{19c} This is consistent with the suggestion that the PN₃ phosphorus in these compounds has greater 1*s* density than the PC₃ phosphorus⁸⁰ owing to the more electronegative nitrogen.

Acknowledgment. We are grateful to the Petroleum Research Foundation administered by the American Chemical Society for a grant in support of this work.

Supporting Information Available: X-ray crystallographic files in CIF format for the structure determinations of compounds **3a**, **8b,f,i**, and **9a,d,e,f**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0703070

⁽⁷⁸⁾ Belyakov, A.; Dalhus, B.; Haaland, A.; Shorokhov, D. J.; Volden, H. V. J. Chem. Soc., Dalton Trans. 2002, 3756–3762.

⁽⁷⁹⁾ Beach, D. B.; Jolly, W. L. Inorg. Chem. 2002, 24, 567-70.

 ^{(80) (}a) Cowley, A. H.; Mills, J. H.; J. Am. Chem. Soc. 1969, 91, 2915–2919. (b) Keiter, R. L.; Verkade, J. G. Inorg. Chem. 1969, 8, 2115–2120.